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Abstract: The U.S. Army Cold Regions Research and
Engineering Laboratory (CRREL) conducted various
laboratory tests on pavement materials from the Mn/
ROAD facility. The tests helped to characterize the be-
havior of materials under season frost conditions, and
to provide input necessary for modeling the materials
with the Mechanistic Pavement Design and Evaluation
Procedure under development at CRREL. This report
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describes test results that define the physical charac-
teristics, such as grain size, specific gravity, Atterberg
limits, organic content, and compaction, as well as
hydraulic properties, such as moisture retention and
hydraulic conductivity, frost susceptibility, and unfro-
zen moisture content of two subgrade samples and
two base materials from Mn/ROAD.
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PREFACE

This report was prepared by Susan R. Bigl, Research Physical Scientist, Civil and
Geotechnical Research Division, Research and Engineering Directorate, U.S. Army
Cold Regions Research and Engineering Laboratory (CRREL), Hanover, New
Hampshire, and by Dr. Richard L. Berg, formerly a Research Civil Engineer at
CRREL.

This work was funded through Agreement 64632, Task Order 1 with the Minnesota
Department of Transportation (Mn/DOT) and a Construction Productivity Advance-
ment Research (CPAR) project, Construction of Roads in Seasonal Frost Areas,
between Mn/DOT and CRREL.

The authors thank George Cochran of the Minnesota Road Research Project and Dr.
Vincent Janoo of CRREL for technically reviewing the manuscript of this report.

Soils testing is a time-consuming and labor-intensive activity and the information
reported here is the result of work done by a team of personnel who work in the soils
laboratory at CRREL. Their efforts are greatly appreciated. Jeffrey Stark, soils
laboratory manager, coordinated and initiated the work, and designed some new
devices to aid molding and processing frozen samples. Rosanne Stoops conducted the
grain-size analysis, Atterberg limits, specific gravity, and organic content tests.
Richard Roberts conducted the frost susceptibility tests and some of the compaction
tests. Charles Smith determined the remaining compaction curves. Jon Ingersoll
conducted the hydraulic property tests—moisture retention and hydraulic conductiv-
ity. And finally, Dr. Patrick Black determined the unfrozen moisture content charac-
teristics.

The contents of this report are not to be used for advertising or promotional
purposes. Citation of brand names does not constitute an official endorsement or
approval of the use of such commercial products.
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EXECUTIVE SUMMARY

Laboratory tests were conducted on pavement materials from the Minnesota Road
Research Project (Mn/ROAD) to characterize their behavior under seasonal frost
conditions, and to provide input necessary for modeling the materials with the
Mechanistic Pavement Design and Evaluation Procedure under development at
CRREL. Test results described in this report include those to generally characterize
physical properties: grain-size distribution, specific gravity, Atterberg limits, organic
content, hydraulic properties (moisture retention and hydraulic conductivity), and
compaction. Also included are tests more specifically related to freeze/thaw pro-
cesses: frost susceptibility and unfrozen moisture content at subfreezing tempera-
tures. Results of resilient modulus tests determined in both the frozen and thawed (or
unfrozen) condition are reported separately (Berg et al. 1996).

The materials reported on here include four samples of the clay subgrade from
beneath the Mn/ROAD site and the two bases with the least (class 6 special) and
greatest (class 3 special) amounts of the fine fraction. When this testing was per-
formed, the two bases with intermediate amounts of fines (class 4 special and class 5
special) were unavailable. However, to conduct subsequent modeling with the Mecha-
nistic Design Procedure (Bigl and Berg 1996), it was necessary to approximate their
behavior using properties of similar materials. Therefore, this report includes charac-
terization test results conducted previously on materials most closely matching the
specified size gradations of the class 4 and 5 subbases. A subbase from taxiway A at
the Albany, New York, airport (Cole et al. 1987) substituted for the class 4 special
subbase. Dense-graded stone, from a Winchendon, Massachusetts, test site (Cole et
al. 1986) substituted for the class 5 special. These materials are referred to here,
respectively, as TAS (taxiway A subbase) and DGS (dense-graded stone).

Three of the four subgrade samples have grain size distributions that classify them
as sandy lean clays, while the fourth is classified as a clayey sand. Both the class 3
special, a well-graded sand, and the class 6 special, a well-graded gravel with sand,
met the Mn/DOT specifications. The TAS material is finer at the no. 40 and no. 200
sieve sizes than the specifications for the class 4 special, so that its predicted behavior
may not be exactly the same as the actual material. Dense-graded stone meets the
specifications for class 5 special except for slightly exceeding the amount of fines at
the no. 200 sieve.

Frost-susceptibility test results indicate that two of the subgrade samples rank as
being highly frost susceptible; the other two subgrade samples rank medium in frost
susceptibility. Of the base materials, data on the class 3 and substitute class 4 materials
are unavailable; the DGS material (class 5 substitute) ranked medium and the class 6
special material ranked as having negligible frost susceptibility.

Moisture retention and unstaturated hydraulic conductivity tests were conducted in
a pressure cell permeameter at tensions ranging from 0 to 700 cm of water (0 to 10 lb/
in.2). Water contents by weight percent had the following ranges: subgrades 14–22%,
class 3 special 5–12%, TAS 5–9%, DGS 3–17%, and class 6 special 1–18%. Hydraulic
conductivities in cm/hr ranged as follows: subgrades 10–2 to 10–5

v



cm/hr (3 × 10–8 to 3 × 10–11 m/s), class 3 special 4.5 to 10–4 cm/hr (10–5 to 3 × 10–10 m/
s), TAS 2.7 to 10–4 cm/hr (8 × 10–6 to 3 × 10–10 m/s), DGS 5.5 to 10–5 cm/hr
(10–5 to 3 × 10–11 m/s), and class 6 special 4.7 to 10–5 cm/hr (10–5 to 3 × 10–11 m/s).

The variation of unfrozen moisture content with temperature was determined using
pulsed nuclear magnetic resonance. Subgrade samples contained about 5% unfrozen
moisture at temperatures below –2°C; class 3 special and class 6 special materials
contained less than 1% unfrozen moisture at these temperatures. Unfrozen moisture
content data are not available for the substitute materials.
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INTRODUCTION

This is one of four reports that describe work
conducted by the U.S. Army Cold Regions Re-
search and Engineering Laboratory related to the
Minnesota Road Research Project (Mn/ROAD)
constructed by the Minnesota Department of Trans-
portation (Mn/DOT). The emphasis of this report
is to summarize information resulting from vari-
ous laboratory tests conducted to characterize ma-
terials from Mn/ROAD. Another report discusses
the results of resilient modulus testing of the Mn/
ROAD materials (Berg et al. 1996). A third report
describes computer modeling that applies the
mechanistic design procedure under development
at CRREL to some of the Mn/ROAD test sections
(Bigl and Berg 1996a), and the final report sum-
marizes information in the first three reports (Bigl
and Berg 1996b).

The laboratory tests discussed here include frost
susceptibility (along with the physical properties:
grain-size distribution, specific gravity, optimum
density and moisture content at specified com-
pactive efforts, Atterberg limits, and organic con-
tent), hydraulic properties, and unfrozen moisture
content.

Materials received
Laboratory testing was performed on samples

of the clay subgrade from beneath the Mn/ROAD
site and on two of the materials that were used as
base and subbase in the pavement sections at Mn/
ROAD. During the testing, a double nomencla-
ture was developed for the subgrade samples. Mn/
DOT refers to the samples as no. 563, 564, 565,

and 566. We alternatively refer to these same re-
spective materials as samples 1171, 1193, 1206,
and 1232.

The base and subbase materials tested included
the class 3 special subbase, a material with a high
percentage of fines, and the class 6 special base,
which has a relatively small amount of fines. The
“special” specifications for the base and subbase
materials were established specifically for Mn/
ROAD, and are different from Mn/DOT’s normal
base/subbase specifications. Class 3 special and
class 6 special materials were initially transmitted
to us as separate size fractions. We created some
samples by mixing these fractions to achieve gra-
dations near the center of the limits specified by
Mn/DOT; these samples are referred to as “blend-
ed” materials. Subsequently, we received samples
of these materials drawn from stockpiles created
for Mn/ROAD. We refer to these as “stockpile”
samples.

Mn/DOT also used two other subbase materials
at the Mn/ROAD facility, termed class 4 special
and class 5 special, which have percentages of
fines that lie intermediate between class 3 special
and class 6 special. Testing of these materials was
accomplished under a later contract. However, in
order to model the predicted damage of test sec-
tions that include class 4 special and class 5 spe-
cial materials, their behavior was approximated
using data from materials tested during prior stud-
ies that most closely matched their specified size
gradations. A “dense-graded stone,” that had been
tested during a cooperative study in Winchendon,
Massachusetts, was the material in our database
that most closely matched the size gradation speci-
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fications of the class 5 special subbase. A subbase
from taxiway A at the Albany, New York, airport
most closely matched the gradation of the class 4
special subbase specifications. We report here,
where available, the comparable data for these
substitute materials. A full report of their original
testing can be found in Cole et al. (1987) for the
Albany taxiway A subbase and in Cole et al. (1986)
for the dense-graded stone.

Matrix of laboratory testing
Table 1 summarizes the matrix of laboratory

tests conducted on the Mn/DOT materials and
includes recommended future work. The table in-
cludes the tests that had been conducted on the
class 3 special and class 6 special “blended” sam-
ples prior to receiving the “stockpile” materials.
Further testing of the blended samples was stopped
when the stockpile materials were received.

TEST RESULTS

Physical properties

Grain size distribution
We analyzed the particle size of the materials

according to ASTM standard D422-63 and clas-
sified them according to ASTM D2487-83 as
shown in Table 2. Table 2 also lists the equivalent
classification according to AASHTO (1990). The
resulting grain-size distribution curves are shown
in Figure 1; final data from the analyses are in
Appendix A. Figure 1 includes the revised speci-
fication limits for the class 3 special and class 6
special materials. The blended class 3 special ma-
terial is slightly finer at sieves no. 10 and no. 40
than required by the specifications; the class 3
special stockpile meets the specification limits.
Grain size distribution data are unavailable for the

Table 1. Laboratory tests performed on Mn/ROAD materials.

Physical properties
Grain Specific Atterberg Organic Compact Frost Hydraul. Unfrozen

Material size gravity limits content test suscept. prop. moisture

Subgrade
1171 (563) o o o o o o o o
1193 (564) o o o o o o – o
1206 (565) o o o o o o o o
1232 (566) o o o o o o o o

Class 3 sp
Blended o o – – o – o –
Stockpile o o o – o F o o

Class 4 sp
Taxiway A • • – – – – • –
subbase

Class 5 sp
Dense–graded • • • – – • • –
stone

Class 6 sp
Blended – o – – o o o –
Stockpile o o – – o F – o

Notes:
o work completed in this study
• data estimated from previous studies
F recommended future work
– no plan to complete this cell in test matrix
“Blended” materials were created from two components supplied by Mn/DOT
“Stockpile” materials were furnished from stockpiles created for the Mn/ROAD project
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a. Subgrade sample 1171 (563).

b. Subgrade sample 1193 (564).

c. Subgrade sample 1206 (565).

Figure 1. Grain size distribution of Mn/ROAD materials. Figures 1e to 1g that show the subbase
and base materials include the range of Mn/DOT specifications.
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Figure 1 (cont’d). Grain size distribution of Mn/ROAD materials. Figures 1e to 1g that show the
subbase and base materials include the range of Mn/DOT specifications.

f. Class 3 special stockpile.

100

80

60

40

20

0
10 1.0 0.1 0.01 0.001

Grain Size (mm)

Gravel Sand
Silt or Clay

C'rse Fine C'rse Medium Fine

P
er

ce
nt

 F
in

er
 b

y 
W

ei
gh

t

Class 3 "Stockpile"

Mn/DOT Specs.

4



Figure 1 (cont’d).

g. Class 6 special stockpile,
specimen A.
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Table 2. Physical properties of Mn/ROAD materials.

Organic
Classification Specific  Atterberg limits content

Material ASTM AASHTO gravity LL PI (%)

Subgrade
1171 (563) SC, Clayey sand A-6 2.70 30.6 10.6 1.1
1193 (564) CL, Sandy lean clay A-6 2.70 31.2 14.3 1.4
1206 (565) CL, Sandy lean clay A-6 2.70 37.0 18.5 1.5
1232 (566) CL, Sandy lean clay A-6 2.71 26.4 10.9 0.7

Class 3
Blended SW, Well-graded sand — — — — —
Stockpile SW, Well-graded sand A-1-b 2.69 17.0* 1.2* —

Class 4
Albany taxiway SM, Silty sand A-1-b 2.73 — — —
A subbase†

Class 5:
Dense-graded GW, Well-graded gravel A-1-a 2.81 23* 3* —
stone† with sand

Class 6:
Blended GW, Well-graded gravel A-1-a 2.79 — — —
Stockpile with sand 2.74 — —

* minus no. 40 sieve fraction.
† from Cole et al. (1986, 1987)

class 6 special blended material; however, the
gradation of the class 6 special stockpile meets
specifications.

Grain size distribution of the materials sub-
stituted for class 4 special and class 5 special
are shown in Figure 2, along with the Mn/DOT

specifications. The taxiway A subbase substi-
tuted for the class 4 special is finer than the
specifications at the no. 40 and no. 200 sieve
sizes, so that its predicted behavior may not be
exactly the same as the actual material. Dense-
graded stone, the substitute for class 5 special
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a. Albany taxiway A subbase/class 4
special base.

b. Dense-graded stone, Winchendon/
class 5 special base.

Figure 2. Grain size distribution of substitute materials and specifications for equivalent Mn/ROAD
bases.

subbase, meets the specifications except for
slightly exceeding the amount of fines at the no.
200 sieve.

Atterberg limits
Atterberg limits were performed on all the

subgrade materials and on the fraction of the class
3 special stockpile material that passed the no. 40
sieve (ASTM D4318-84; Table 2). Limits of the
minus no. 40 sieve fraction of the dense-graded
stone are also noted in Table 2. Cole et al. (1987)
did not conduct Atterberg limit tests on the Al-
bany taxiway A subbase.

Specific gravity
Table 2 includes the results of the specific grav-

ity tests conducted on the Mn/DOT materials ac-
cording to ASTM D854-83. Also listed are the
results for the substitute materials from Cole et al.
(1986, 1987).

Organic content
Organic contents were conducted only on the

subgrade materials, using ASTM D2974-87, Method
C with a maximum furnace temperature of 500°C.
Results are given in Table 2. No organic content
data are available for the substitute materials.
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Table 3. Compaction test results—Mn/ROAD ma-
terials.

Optimum
Maximum water
dry density content Method

Material lb/ft 3 (Mg/m3) (wt %) employed

Subgrade
1171 (563) 120.1 (1.92) 13.8 CE-55
1193 (564) 120.6 (1.93) 13.2 CE-55
1206 (565) 117.8 (1.89) 15.5 CE-55
1206 (565) 105.5 (1.69) 18.0 CE-12
1206 (565) 102.1 (1.64) 20.4 5 K
1232 (566) 124.4 (1.99) 11.9 CE-55

Class 3
Blended 117.0 (1.87) 11.0 CE-12
Stockpile 131.8 (2.11) 7.6 CE-55
Stockpile 123.7 (1.99) 11.0 CE-12

Class 6
Blended 132.3 (2.12)  4.1 CE-55
Stockpile 130.4 (2.09) 2.1 CE-55
Stockpile 120.8 (1.93)  4.0 CE-12

Notes:
CE-55 is similar to AASHTO T-180
CE-12 is similar to AASHTO T-99
5 K has a compactive effort of 5,000 ft-lb/ft3

(239 kJ/m3)

a. Subgrade sample 1171 (563). b. Subgrade sample 1193 (564).
Figure 3. Compaction test results.

Compaction
Results of the compaction tests are shown in

Figure 3 and summarized in Table 3, along with
the method used. Appendix B contains raw data
from the tests. We used three compactive proce-
dures in the tests conducted: 1) Army method CE-
55 (MIL-STD-621A, method 100), which is simi-
lar to the modified AASHTO compaction test
(AASHTO T-180-74) and involves a compactive
effort of 55,000 ft-lb/ ft3 (2,630 kJ/m3); 2) method
CE-12 (MIL-STD-621A; equivalent to AASHTO
T-99-81), which provides 12,000 ft-lb/ft3(575 kJ/
m3) of compactive effort; and 3) a procedure pro-
viding 5,000 ft-lb/ft3 (239 kJ/m3) of compactive
effort using the same equipment used for the CE-
55 and CE-12 methods. In all cases, a mechanical
compactor with a “sector foot” was used to com-
pact the samples.

Cole et al. (1987) did not provide compaction
data for the class 4 special and class 5 special
subbase substitute materials.

Frost susceptibility
Frost susceptibility tests were conducted using

the procedures described in Chamberlain (1987).
Frost susceptibility was determined by subjecting
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d. Subgrade sample 1232 (566).

e. Class 3 special blended.c. Subgrade sample 1206 (565).

f. Class 3 special stockpile.

Figure 3 (cont’d). Compaction test results.

a soil sample to two freezing cycles and determin-
ing the heave rate during the first 8 hours of each
cycle. The 8-hr heave rate was then converted to
an equivalent heave rate in mm/day. The heave
rate from the two cycles can vary significantly,
especially if the soil contains large amounts of
clay. To determine the thaw weakening of the soil
at the completion of the test, a CBR (California
Bearing Ratio) test is run on the thawed sample
after allowing drainage for 24 hours. The sample’s
frost susceptibility classification is then determined

Table 4. Tentative frost susceptibility criteria
(from Chamberlain 1987).

8-hr
Frost susceptibility heave rate Thaw CBR

classification (mm/day) (%)

Negligible < 1 > 20
Very low 1–2 20–15
Low 2–4 15–10
Medium 4–8 10–5
High 8–16 5–2
Very high >16 < 2
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using the criteria shown in Table 4. Results from
these tests are used as a relative index rather than
a quantitative predictor of behavior.

A partial frost susceptibility test was conducted
on the class 3 special stockpile material, but equip-
ment problems were discovered while running the
test, and the results are not presented.

Table 5 summarizes the frost susceptibility
test results for the subgrade samples and the class
6 special blended material. Figure 4 plots time

variation of the frost heave and frost depth data
recorded during the tests, which are also reported
in Appendix C. It should be noted that when
samples of subgrade 1206 and 1232 were frozen a
third time to prepare them for the frozen resilient
modulus testing, both soils heaved at a rate that
would have been considered highly frost suscep-
tible. The data suggest that the frost susceptibility
of the subgrade may increase with increasing
freeze-thaw cycles.

Figure 3 (cont’d).
g. Class 6 special blended. h. Class 6 special stockpile.

Table 5. Frost susceptibility test results.

1st freeze cycle 2nd freeze cycle CBR test
Hv rate Rating* Hv rate Rating* CBR Rating* Overall

Material (mm/day) (mm/day) (%) rating

Subgrade
1171 (563) 1 V. low 7.5 Medium 2 High Medium
1193 (564) 9.3 High 22.5 V. high <1 V. high V. high
1206 (565) 9.3 High 16 High <1 V. high V. high
1232 (566) 1 V. low 7.5 Medium 2 High Medium

Class 5 (dense stone)
Sample 1 3.0 Low 3.0 Low 7 Medium Low
Sample 2 NF —  4.3 Medium 11 Low Medium
Sample 3 5.5 Medium 5.4 Medium 11 Low Medium
Sample 4 5.3 Medium 5.3 Medium 12 Low Medium

Class 6
blended <1 Negl. <1 Negl. 29 Negl. Negl.

* Frost susceptibility rating
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Figure 4. Data from frost susceptibility test on Mn/ROAD materials.
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Figure 4 (cont’d).

d. Subgrade sample 1232 (566).

e. Class 6 special blended.

Of the two substitute materials, frost suscepti-
bility data are available only for dense-graded stone,
as reported by Chamberlain (1986). Figure 5 shows
the heave data, which are summarized in Table 5.

The data indicate that the frost susceptibility
classifications of the subgrades range from me-
dium to very high. The well-graded class 6 special
base has negligible frost susceptibility, and the
dense-graded stone (class 5 substitute) ranks as
having medium frost susceptibility.

Hydraulic properties
Moisture retention and unstaturated hydraulic

conductivity tests were conducted in a pressure
cell permeameter using the procedures described
in Ingersoll (1981). A typical moisture retention

test begins with a saturated sample that is dried
incrementally to determine point values of mois-
ture content and pore pressure head, during what
is termed the drying or extraction phase of the
test. Incremental amounts of moisture are then
reintroduced to the sample in the wetting or ab-
sorption phase. At each moisture condition, an
unstaturated hydraulic conductivity test is also
conducted. Materials tested included subgrade
samples 1171, 1206, and 1232; class 3 special and
class 6 special blended materials; and class 3 spe-
cial stockpile material. Data are also available for
both substitute materials for class 4 special and
class 5 special. Appendix D contains data from
the moisture retention and unstaturated hydraulic
conductivity tests.
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The coarse nature of the class 6 ma-
terial required a modification of the
sample preparation procedure described
by Ingersoll (1981). An 1/8-in. (3-mm)
layer of coarse sand was placed at the
contact with both the lower and upper
porous plates of the test cell to allow
proper capillary action at these inter-
faces. It is extremely difficult to obtain
accurate data at tensions near satura-
tion on the class 6 material because it
drains so easily. Be aware, then, that
the low tension data points are esti-
mates, while the values at higher ten-
sions are more accurate. To check that
the inserted sand layers were not a large
influence on the hydraulic test, a con-
ventional saturated permeability test
was also run on the class 6 special material. The
result was 6.0 cm/hr, which compares favorably
with 4.7 cm/hr from the pressure cell permeameter.

A final note is that the test on the subgrade
sample 1171 was terminated during the extraction
phase because an unknown amount of water was
lost. Extraction values are also the only data avail-
able for the class 3 special blended subbase, class
6 special blended base, dense-graded stone base,
and taxiway A subbase.

Figure 6 shows results of the moisture retention
tests expressed both as weight and volumetric per-
centages. To view the results in terms of tension
in kilopascals, divide the centimeters of water units
by a factor of 10. The dashed lines in Figure 6

represent the calculated values used in the mecha-
nistic design procedure to approximate the data
using an equation in the form of Gardner’s (1958),
as follows:

θ
θ

αu
o

w p

=
+A h 1 (1)

whereθu = volumetric unfrozen water content (%)
θo = soil porosity (%)
hp = pore pressure head (cm of water)
Aw = Gardner’s multiplier for the moisture

characteristics
α = Gardner’s exponent for the moisture

characteristics.
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Figure 5. Data from frost susceptibility test on dense-graded
stone (from Chamberlain 1986).
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Figure 6. Moisture retention test results. Dashed line represents Gardner’s equation approximation of the
extraction data.
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Table 7. Coefficients for hydraulic pro-
perties relating hydraulic conductivity
(k, cm/hr) to degree of saturation (S, %)
in the form k = A×10 Β × S.

Material A  B

Subgrade
1171 (563) 8.539 × 10–21 0.184
1206 (565) 9.503 × 10–22 0.189
1232 (566) 5.880 × 10–20 0.161

Class 3
Blended 3.035 × 10–11 0.114
Stockpile 1.061 × 10–9 0.100

Class 4
Taxiway A 1.981 × 10–10 0.103
subbase

Class 5
Dense-graded 8.3491 × 10–5 0.050
stone

Class 6
Blended 1.063 × 10–4 0.056

We determined point values of θu and hp in the
moisture retention test and fitted eq 1 to the ex-
traction curve using a least squares approach to
determine the best fitted parameters Aw and α.
Table 6 lists these parameters for the samples
tested.

Results of the hydraulic conductivity tests are
displayed vs. pore water tension in Figure 7. Again,
the dashed line in Figure 7 is the best fit approxi-
mation used in the model to represent the unsatur-
ated hydraulic conductivity using the equation:

K
k

A h
H

s

K p

=
+

β
1 (2)

whereKH = unsaturated hydraulic conductivity
(cm/hr)

ks = saturated hydraulic conductivity (cm/
hr)

hp = pore pressure head (cm of water)
AK = Gardner’s multiplier for hydraulic

conductivity
β = Gardner’s exponent for hydraulic

conductivity.

We determined point values of KH and hp for
each sample and fitted eq 2 to the extraction data
using a least squares approach to determine the
best fitted parameters AK and β (Table 6).

Table 6. Coefficients for hydraulic properties in the form of Gardner’s
equations.

Moisture retention Hydraulic conductivity
Material Aw α AK β

Subgrade
1171 (563) 0.01232 0.4760 0.1647 1.5905
1206 (565) 0.002399 0.7134 0.0005713 2.6395
1232 (566) 0.002260 0.6790 0.001885 1.8129

Class 3
Blended 0.026538 0.5933 0.0010507 3.5199
Stockpile 0.1735 0.3239 1647.1 0.7207

Class 4
Taxiway A 0.1520 0.2690 6.59 × 10–5 2.9620
aubbase

Class 5
Dense-graded 0.4961 0.3660 3.912 1.3930
stone

Class 6
Blended 1.0001 0.4444 1.0729 × 10 –6 5.8979

Figure 8 shows the relationship between degree
of saturation and hydraulic conductivity for the
materials tested and for the substitute materials.
Exponential regression curves fit to the data, which
include both extraction and absorption values, are
shown in Table 7.
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Figure 7. Tension vs. hydraulic conductivity curves. Solid line represents Gardner’s equation approxi-
mation of the extraction data.

a. Subgrade sample 1171 (563). d. Class 3 special blended.

b. Subgrade sample 1206 (565).

c. Subgrade sample 1232 (566).

e. Class 3 special stockpile.

f. Class 6 special blended
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Figure 7 (cont’d). Tension vs. hydraulic con-
ductivity curves. Solid line represents Gard-
ner’s equation approximation of the extrac-
tion data.

Figure 8. Degree of saturation vs. hydraulic
conductivity curves. Solid line is an exponen-
tial regression fitted to both the extraction
and absorption data, when available.

a. Subgrade sample 1171 (563)

b. Subgrade sample 1206 (565).

The best fit lines shown in Figures 7 and 8 are
those that are generated from eq 1 and 2. Other
equations may fit data from some samples better,
but the Gardner’s form equation is that currently
employed in the mechanistic design procedure.

Unfrozen moisture content
The variation of unfrozen moisture content with

temperature was determined by testing each mate-
rial with a pulsed nuclear magnetic resonance tech-
nique (Tice et al. 1982). The cooling curve data
are presented in Appendix E and in Figure 9. The
figure also includes a curve of calculated values
used to represent the data in the mechanistic pro-
cedure, produced with an equation in the form:

w
T

T
Tu  ;  = −





< °α
β

0
0 C  (3)

wherewu = gravimetric unfrozen moisture content
(%)

T = temperature (°C)
T0 = 1.0°C

α and β = constants

Table 8 presents the constants determined for
each sample. The class 6 special stockpile material
was split into two fractions above and below the no.
30 sieve. The calculated curve represents the equa-
tion developed for the minus no. 30 sieve fraction.

h. Dense-graded stone.
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Figure 8 (cont’d). Degree of saturation vs. hydraulic conductivity curves. Solid line is exponential
regression fit to both the extraction and absorption data, when available.

c. Subgrade sample 1232 (566).
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Figure 9. Temperature vs. gravimetric unfrozen water content curves. Solid line represents calcu-
lated values to approximate the data.

b. Subgrade sample 1193 (564).

c. Subgrade sample 1206 (565).

d. Subgrade sample 1232 (566).

f. Class 6 special stockpile.

e. Class 3 special stockpile.

a. Subgrade sample 1171 (563).
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Unfrozen moisture content data are not avail-
able for the substitute materials, so constants to
approximate their behavior were estimated. Table
8 lists the constants originally estimated for these
materials by Cole et al. (1986, 1987); we continue
their use.

Note that the subgrade samples contained ap-
proximately 5% unfrozen moisture at tempera-
tures below –2°C; the class 3 special and class 6
special materials contained less than 1% unfrozen
moisture at these temperatures.

CONCLUSIONS

This report has described the results of labora-
tory testing conducted to determine the physical
and behavioral characteristics of materials believed
to represent those that will be incorporated into
the Mn/ROAD Research Facility. We can use our
full understanding of these characteristics to pre-
dict the behavior of these materials with the Mecha-
nistic Pavement Design Procedure under de–
velopment at CRREL (Bigl and Berg 1996a).

Performance data from Mn/ROAD will allow us
to verify/modify the procedure to better predict
time to failure of pavement systems.
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